Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Vaccine ; 41(24): 3627-3635, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2310644

ABSTRACT

Dengue is a growing public health threat, causing approximately 400 million infections annually. In June 2021, the Advisory Committee on Immunization Practices recommended the first dengue vaccine (CYD-TDV) for children aged 9-16 years with a previous dengue infection, living in endemic areas, such as Puerto Rico (PR). As the COVID-19 pandemic affected vaccine intention worldwide, we assessed dengue vaccine intention before (pre-COVID) and after (post-COVID) COVID-19 vaccine availability among participants enrolled in the Communities Organized to Prevent Arboviruses (COPA) cohort to prepare for dengue vaccine implementation in PR. We used logistic regression models to evaluate changes in dengue vaccine intention by interview timing and participant characteristics. Among 2,513 participants pre-COVID, 2,512 answered the dengue vaccine intention question for themselves, and 1,564 answered relative to their children. Post-COVID, dengue vaccine intention in adults increased for themselves from 73.4% to 84.5% (adjusted odds ratio (aOR) = 2.27, 95%CI: 1.90-2.71) and relative to their children from 75.6% to 85.5% (aOR = 2.21, 95%CI: 1.75-2.78). Among all participants, groups with higher dengue vaccine intention included those who reported previous year influenza vaccine uptake and those who reported being frequently bitten by mosquitos, compared to those who did not. Adult males were also more likely to intend to vaccinate themselves than females. Respondents who were employed or in school were less likely to intend to vaccinate compared to those who were not working. The primary reasons for vaccine hesitancy were concerns with side effects and not believing in vaccines, which should be considered during educational strategies prior to dengue vaccine implementation. In general, dengue vaccine intention is high in PR and has increased after COVID-19 vaccine availability, potentially due to increased awareness of vaccine importance during the COVID-19 pandemic.


Subject(s)
COVID-19 , Dengue Vaccines , Dengue , Adult , Male , Child , Female , Humans , Dengue/epidemiology , Dengue/prevention & control , Puerto Rico/epidemiology , COVID-19 Vaccines , Pandemics , Vaccines, Attenuated , COVID-19/prevention & control , Vaccination
2.
Curr Opin Pediatr ; 35(2): 147-154, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2230051

ABSTRACT

PURPOSE OF REVIEW: Dengue is the most important arthropod-borne viral disease of public health significance. Its geographic distribution includes 128 countries worldwide, affecting 390 million people every year causing significant morbidity and mortality in children and adults everywhere. RECENT FINDINGS: In the past, severe dengue affected mostly adults in the Americas; this scenario has changed and now cases of dengue, severe dengue, and dengue deaths have increased in children under 15 years in Brazil and in Colombia. Dengue and COVID-19 co-infections have been reported in South America, with increased hospitalization. A dengue vaccine for 9-year-old children and older children and adults who have serological evidence of previous dengue has been licensed in many countries; a different dengue vaccine trial for 4-16-year-old children has demonstrated decrease in clinical dengue and decrease in dengue hospitalizations. SUMMARY: There is no specific treatment of dengue, and a changing climate, insecticide resistance and urban expansion have permitted the vector's spread, making the vector control almost impossible. The hope for dengue control relies on vaccine development; there is important research on this area with one vaccine already licensed and another one showing promising results.


Subject(s)
COVID-19 , Dengue Vaccines , Dengue , Adult , Humans , Child , Adolescent , Child, Preschool , Dengue/epidemiology , Dengue/prevention & control , Dengue Vaccines/therapeutic use , Public Health , South America/epidemiology
3.
Lancet Microbe ; 3(6): e427-e434, 2022 06.
Article in English | MEDLINE | ID: covidwho-2050134

ABSTRACT

BACKGROUND: A dengue pre-vaccination test that is convenient, highly specific, and highly sensitive is still needed. The OnSite Dengue IgG rapid diagnostic test (RDT) is a new rapid diagnostic test specifically designed for pre-vaccination screening. We aimed to retrospectively assess the efficacy of a tetravalent dengue vaccine (CYD-TDV) in participants determined to be dengue seropositive by the OnSite IgG RDT and to evaluate assay performances. METHODS: This was a complementary study using pre-vaccination samples from two CYD-TDV efficacy trials done in five countries in the Asia-Pacific region (NCT01373281) and five countries in Latin America (NCT01374516). Baseline dengue serostatus was determined by the OnSite IgG RDT on samples from the immunogenicity subsets of the two trials. In participants who were test positive, we calculated CYD-TDV vaccine efficacy against symptomatic virologically confirmed dengue (VCD) over 25 months, and against hospitalisation with VCD over 72 months of follow-up after the first vaccination. We used a reference algorithm to determine the reference dengue serostatus for each sample, and sensitivity and specificity of the OnSite IgG RDT were calculated. Analyses were done on the whole population (aged 2-16 years), and on those aged 6 years or older and those aged 9 years or older. FINDINGS: Of 3983 participants in the immunogenicity subsets of the efficacy trials CYD14 and CYD15, 3962 had complete dengue reference test results enabling baseline serostatus classification and 3833 had sufficient serum samples remaining for evaluation with the OnSite IgG RDT. Of the samples tested, 2486 (64·9%) of 3833 were OnSite IgG RDT-positive. In participants aged 2-16 years who were OnSite IgG RDT-positive, vaccine efficacy was 84·1% (95% CI 71·6-91·1) against symptomatic VCD, and 69·2% (38·8-84·5) against hospitalisation with VCD, with similar findings in those aged 6 years or older and those aged 9 years or older. The OnSite IgG RDT showed very high sensitivity (91·1%, 89·9-92·1) and high specificity (92·8%, 91·2-94·2) in participants aged 2-16 years, with significantly higher specificity in those aged 9 years or older (96·6%, 94·9-97·8). INTERPRETATION: The OnSite IgG RDT should provide a valuable tool for screening for previous dengue infection at the point of vaccination. In individuals who were OnSite IgG RDT-positive, the vaccine efficacy of CYD-TDV was high across all three age groups. FUNDING: Sanofi Pasteur.


Subject(s)
Biomedical Research , Dengue Vaccines , Dengue Virus , Dengue , Antibodies, Viral , Dengue/diagnosis , Humans , Immunoglobulin G , Retrospective Studies , Vaccination , Vaccines, Combined
4.
Vaccine ; 40(45): 6455-6462, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2050054

ABSTRACT

The severity of the COVID-19 pandemic and the development of multiple SARS-CoV-2 vaccines expedited vaccine 'mix and match' trials in humans and demonstrated the benefits of mixing vaccines that vary in formulation, strength, and immunogenicity. Heterologous sequential vaccination may be an effective approach for protecting against dengue, as this strategy would mimic the natural route to broad dengue protection and may overcome the imbalances in efficacy of the individual leading live attenuated dengue vaccines. Here we review 'mix and match' vaccination trials against SARS-CoV-2, HIV, and dengue virus and discuss the possible advantages and concerns of future heterologous immunization with the leading dengue vaccines. COVID-19 trials suggest that priming with a vaccine that induces strong cellular responses, such as an adenoviral vectored product, followed by heterologous boost may optimize T cell immunity. Moreover, heterologous vaccination may induce superior humoral immunity compared to homologous vaccination when the priming vaccine induces a narrower response than the boost. The HIV trials reported that heterologous vaccination was associated with broadened antigen responses and that the sequence of the vaccines significantly impacts the regimen's immunogenicity and efficacy. In heterologous dengue immunization trials, where at least one dose was with a live attenuated vaccine, all reported equivalent or increased immunogenicity compared to homologous boost, although one study reported increased reactogenicity. The three leading dengue vaccines have been evaluated for safety and efficacy in thousands of study participants but not in combination in heterologous dengue vaccine trials. Various heterologous regimens including different combinations and sequences should be trialed to optimize cellular and humoral immunity and the breadth of the response while limiting reactogenicity. A blossoming field dedicated to more accurate correlates of protection and enhancement will help confirm the safety and efficacy of these strategies.


Subject(s)
COVID-19 , Dengue Vaccines , Dengue , HIV Infections , Humans , Vaccines, Attenuated , COVID-19 Vaccines , Pandemics , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , HIV Infections/prevention & control , Antibodies, Viral , Immunogenicity, Vaccine
5.
Lancet Infect Dis ; 22(6): 901-911, 2022 06.
Article in English | MEDLINE | ID: covidwho-1889989

ABSTRACT

BACKGROUND: Dengue is endemic in many countries throughout the tropics and subtropics, and the disease causes substantial morbidity and health-care burdens in these regions. We previously compared antibody responses after one-dose, two-dose, or three-dose primary regimens with the only approved dengue vaccine CYD-TDV (Dengvaxia; Sanofi Pasteur, Lyon, France) in individuals aged 9 years and older with previous dengue exposure. In this study, we assessed the need for a CYD-TDV booster after these primary vaccination regimens. METHODS: In this randomised, controlled, phase 2, non-inferiority study, healthy individuals aged 9-50 years recruited from three sites in Colombia and three sites in the Philippines (excluding those with the usual contraindications to vaccinations) were randomly assigned 1:1:1 via a permuted block method with stratification by site and by age group using an independent voice response system to receive, at 6-month intervals, three doses of CYD-TDV (three-dose group), one dose of placebo followed by two doses of CYD-TDV (two-dose group), or two doses of placebo followed by one dose of CYD-TDV (one-dose group). Participants were also randomly assigned (1:1) to receive a CYD-TDV booster at 1 year or 2 years after the last primary dose. Each CYD-TDV dose was 0·5 mL and administered subcutaneously in the deltoid region of the upper arm. The investigators and sponsor, study staff interacting with the investigators, and participants and their parents or legally acceptable representatives were masked to group assignment. Neutralising antibodies were measured by 50% plaque reduction neutralisation testing, and geometric mean titres (GMTs) were calculated. Due to a change in study protocol, only participants who were dengue seropositive at baseline in the Colombian cohort received a booster vaccination. The primary outcome was to show non-inferiority of the booster dose administered at 1 year or 2 years after the two-dose and three-dose primary regimens; non-inferiority was shown if the lower limit of the two-sided adjusted 95% CI of the between-group (day 28 post-booster dose GMT from the three-dose or two-dose group vs day 28 GMT post-dose three of the three-dose primary regimen [three-dose group]) geometric mean ratio (GMR) was higher than 0·5 for each serotype. Non-inferiority of the 1-year or 2-year booster was shown if all four serotypes achieved non-inferiority. Safety was assessed among all participants who received the booster. This trial is registered with ClinicalTrials.gov, NCT02628444, and is closed to accrual. FINDINGS: Between May 2 and Sept 16, 2016, we recruited and enrolled 1050 individuals who received either vaccine or placebo. Of the 350, 348, and 352 individuals randomly assigned to three-dose, two-dose, and one-dose groups, respectively, 108, 115, and 115 from the Colombian cohort were dengue seropositive at baseline and received a booster; 55 and 53 in the three-dose group received a booster after 1 year and 2 years, respectively, as did 59 and 56 in the two-dose group, and 62 and 53 in the one-dose group. After the three-dose primary schedule, non-inferiority was shown for serotypes 2 (GMR 0·746; 95% CI 0·550-1·010) and 3 (1·040; 0·686-1·570) but not serotypes 1 (0·567; 0·399-0·805) and 4 (0·647; 0·434-0·963) for the 1-year booster, and again for serotypes 2 (0·871; 0·673-1·130) and 3 (1·150; 0·887-1·490) but not serotypes 1 (0·688; 0·479-0·989) and 4 (0·655; 0·471-0·911) for the 2-year booster. Similarly, after the two-dose primary schedule, non-inferiority was shown for serotypes 2 (0·809; 0·505-1·300) and 3 (1·19; 0·732-1·940) but not serotypes 1 (0·627; 0·342-1·150) and 4 (0·499; 0·331-0·754) for the 1-year booster, and for serotype 3 (0·911; 0·573-1·450) but not serotypes 1 (0·889; 0·462-1·710), 2 (0·677; 0·402-1·140), and 4 (0·702; 0·447-1·100) for the 2-year booster. Thus, non-inferiority of the 1-year or 2-year booster was not shown after the three-dose or two-dose primary vaccination regimen in dengue-seropositive participants. No safety concerns occurred with the 1-year or 2-year CYD-TDV booster. INTERPRETATION: CYD-TDV booster 1 year or 2 years after the two-dose or three-dose primary vaccination regimen does not elicit a consistent, meaningful booster effect against all dengue serotypes in participants who are seropositive for dengue at baseline. FUNDING: Sanofi Pasteur. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Subject(s)
Dengue Vaccines , Dengue , Antibodies, Viral , Antibody Formation , Dengue/prevention & control , Humans , Vaccination
7.
Mol Ther ; 30(5): 2058-2077, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1612108

ABSTRACT

The ongoing COVID-19 pandemic highlights the need to tackle viral variants, expand the number of antigens, and assess diverse delivery systems for vaccines against emerging viruses. In the present study, a DNA vaccine candidate was generated by combining in tandem envelope protein domain III (EDIII) of dengue virus serotypes 1-4 and a dengue virus (DENV)-2 non-structural protein 1 (NS1) protein-coding region. Each domain was designed as a serotype-specific consensus coding sequence derived from different genotypes based on the whole genome sequencing of clinical isolates in India and complemented with data from Africa. This sequence was further optimized for protein expression. In silico structural analysis of the EDIII consensus sequence revealed that epitopes are structurally conserved and immunogenic. The vaccination of mice with this construct induced pan-serotype neutralizing antibodies and antigen-specific T cell responses. Assaying intracellular interferon (IFN)-γ staining, immunoglobulin IgG2(a/c)/IgG1 ratios, and immune gene profiling suggests a strong Th1-dominant immune response. Finally, the passive transfer of immune sera protected AG129 mice challenged with a virulent, non-mouse-adapted DENV-2 strain. Our findings collectively suggest an alternative strategy for dengue vaccine design by offering a novel vaccine candidate with a possible broad-spectrum protection and a successful clinical translation either as a stand alone or in a mix and match strategy.


Subject(s)
COVID-19 , Dengue Vaccines , Dengue Virus , Dengue , Vaccines, DNA , Antibodies, Neutralizing , Antibodies, Viral , Dengue/prevention & control , Dengue Vaccines/genetics , Dengue Virus/genetics , Humans , Pandemics , Viral Envelope Proteins/genetics
8.
BioDrugs ; 35(5): 505-515, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1408117

ABSTRACT

Vaccine-associated enhanced disease (VAED) is a serious barrier to attaining successful virus vaccines in human and veterinary medicine. VAED occurs as two different immunopathologies, antibody-dependent enhancement (ADE) and vaccine-associated hypersensitivity (VAH). ADE contributes to the pathology of disease caused by four dengue viruses (DENV) through control of the intensity of cellular infection. Products of virus-infected cells are toxic. A partially protective yellow fever chimeric tetravalent DENV vaccine sensitized seronegative children to ADE breakthrough infections. A live-attenuated tetravalent whole virus vaccine in phase III testing appears to avoid ADE by providing durable protection against the four DENV. VAH sensitization by viral vaccines occurred historically. Children given formalin-inactivated measles or respiratory syncytial virus (RSV) vaccines experienced severe disease during breakthrough infections. Tissue responses demonstrated that VAH not ADE caused these vaccine safety problems. Subsequently, measles was successfully and safely contained by a live-attenuated virus vaccine. The difficulty in formulating a safe and effective RSV vaccine is troublesome evidence that avoiding VAH is a major research challenge. VAH-like tissue responses were observed during breakthrough homologous virus infections in monkeys given severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS) vaccines.


Subject(s)
Dengue Vaccines , Dengue , Virus Diseases , Antibodies, Neutralizing , Antibodies, Viral , Humans , Viral Envelope Proteins
9.
Commun Biol ; 4(1): 557, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1387494

ABSTRACT

Dengue virus (DENV) is spread from human to human through the bite of the female Aedes aegypti mosquito and leads to about 100 million clinical infections yearly. Treatment options and vaccine availability for DENV are limited. Defective interfering particles (DIPs) are considered a promising antiviral approach but infectious virus contamination has limited their development. Here, a DENV-derived DIP production cell line was developed that continuously produced DENV-free DIPs. The DIPs contained and could deliver to cells a DENV serotype 2 subgenomic defective-interfering RNA, which was originally discovered in DENV infected patients. The DIPs released into cell culture supernatant were purified and could potently inhibit replication of all DENV serotypes in cells. Antiviral therapeutics are limited for many viral infection. The DIP system described could be re-purposed to make antiviral DIPs for many other RNA viruses such as SARS-CoV-2, yellow fever, West Nile and Zika viruses.


Subject(s)
Defective Viruses , Dengue Vaccines/therapeutic use , Dengue Virus/growth & development , Dengue/prevention & control , Virus Replication , Animals , Cell Line, Tumor , Chlorocebus aethiops , Defective Viruses/genetics , Defective Viruses/metabolism , Dengue/virology , Dengue Virus/genetics , Dengue Virus/metabolism , Genes, Reporter , HEK293 Cells , Host-Pathogen Interactions , Humans , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , Vero Cells , Viral Load
10.
Vaccine ; 39(35): 4964-4972, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1331282

ABSTRACT

This article applies a qualitative approach to the 2017 dengue vaccine controversy involving Sanofi Pasteur's Dengvaxia to understand vaccine hesitancy and related anxieties in contemporary Philippines. Through a multisited project that investigated the health aspirations and lived experiences of low- and middle-income Filipinos across urban and rural Philippines, this article distills the perspectives of both ordinary community members and health workers in local and national capacities regarding the controversy-and how it altered their perceptions toward vaccines, health care, and government. Our study reveals widespread mistrust and fear in the communities toward both the state and health institutions following the controversy, with frontline health workers bearing the brunt of the communities' apprehensions, and the media partly responsible in fomenting these fears. Given the repetitive nature of health and vaccine controversies, this article suggests the importance of responsible journalism, well-calibrated crisis communications, and a people-centered health paradigm that involves exploring local contexts of vaccine hesitancy and mining people's lived experiences in tackling present and future health crises-especially now in the advent of COVID-19 vaccinations.


Subject(s)
COVID-19 , Dengue Vaccines , Vaccines , Fear , Humans , Philippines , SARS-CoV-2 , Vaccination
11.
Brief Funct Genomics ; 20(5): 289-303, 2021 09 11.
Article in English | MEDLINE | ID: covidwho-1258749

ABSTRACT

Messenger RNA (mRNA) vaccines have recently emerged as a new type of vaccine technology, showing strong potential to combat the COVID-19 pandemic. In addition to SARS-CoV-2 which caused the pandemic, mRNA vaccines have been developed and tested to prevent infectious diseases caused by other viruses such as Zika virus, the dengue virus, the respiratory syncytial virus, influenza H7N9 and Flavivirus. Interestingly, mRNA vaccines may also be useful for preventing non-infectious diseases such as diabetes and cancer. This review summarises the current progresses of mRNA vaccines designed for a range of diseases including COVID-19. As epitope study is a primary component in the in silico design of mRNA vaccines, we also survey on advanced bioinformatics and machine learning algorithms which have been used for epitope prediction, and review on user-friendly software tools available for this purpose. Finally, we discuss some of the unanswered concerns about mRNA vaccines, such as unknown long-term side effects, and present with our perspectives on future developments in this exciting area.


Subject(s)
Epitopes/chemistry , RNA, Messenger/metabolism , Vaccines/therapeutic use , Virus Diseases/prevention & control , Algorithms , Animals , COVID-19/prevention & control , COVID-19 Vaccines , Cancer Vaccines , Communicable Disease Control , Computational Biology , Dengue Vaccines , Diabetes Mellitus/therapy , Humans , Influenza Vaccines , Machine Learning , Neoplasms/therapy , Pandemics/prevention & control , Patient Safety , Respiratory Syncytial Virus Vaccines , SARS-CoV-2 , Software , Zika Virus Infection/prevention & control
12.
Front Immunol ; 11: 575074, 2020.
Article in English | MEDLINE | ID: covidwho-1256374

ABSTRACT

Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.


Subject(s)
Dengue Virus/immunology , Immunity, Cellular , Orthomyxoviridae/immunology , Respiratory Syncytial Virus, Human/immunology , Rotavirus/immunology , Viral Vaccines/therapeutic use , Virus Diseases/immunology , Yellow fever virus/immunology , Biomarkers/blood , Dengue/blood , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/therapeutic use , Dengue Virus/pathogenicity , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Influenza Vaccines/therapeutic use , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae/pathogenicity , Predictive Value of Tests , RNA, Messenger/blood , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/pathogenicity , Rotavirus/pathogenicity , Rotavirus Infections/blood , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines , Signal Transduction/genetics , Virus Diseases/blood , Virus Diseases/prevention & control , Virus Diseases/virology , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/pathogenicity
13.
Nat Med ; 27(4): 591-600, 2021 04.
Article in English | MEDLINE | ID: covidwho-1180259

ABSTRACT

Examination of the vaccine strategies and technical platforms used for the COVID-19 pandemic in the context of those used for previous emerging and reemerging infectious diseases and pandemics may offer some mutually beneficial lessons. The unprecedented scale and rapidity of dissemination of recent emerging infectious diseases pose new challenges for vaccine developers, regulators, health authorities and political constituencies. Vaccine manufacturing and distribution are complex and challenging. While speed is essential, clinical development to emergency use authorization and licensure, pharmacovigilance of vaccine safety and surveillance of virus variants are also critical. Access to vaccines and vaccination needs to be prioritized in low- and middle-income countries. The combination of these factors will weigh heavily on the ultimate success of efforts to bring the current and any future emerging infectious disease pandemics to a close.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Communicable Diseases, Emerging/prevention & control , SARS-CoV-2/immunology , Vaccines/immunology , Cholera Vaccines/immunology , Communicable Diseases, Emerging/epidemiology , Dengue Vaccines/immunology , Health Services Accessibility , Humans , Pharmacovigilance , Typhoid-Paratyphoid Vaccines/immunology , Yellow Fever Vaccine/immunology
15.
J Infect Dis ; 222(12): 1946-1950, 2020 Nov 13.
Article in English | MEDLINE | ID: covidwho-1060046

ABSTRACT

Might COVID-19 vaccines sensitize humans to antibody-dependent enhanced (ADE) breakthrough infections? This is unlikely because coronavirus diseases in humans lack the clinical, epidemiological, biological, or pathological attributes of ADE disease exemplified by dengue viruses (DENV). In contrast to DENV, SARS and MERS CoVs predominantly infect respiratory epithelium, not macrophages. Severe disease centers on older persons with preexisting conditions and not infants or individuals with previous coronavirus infections. Live virus challenge of animals given SARS or MERS vaccines resulted in vaccine hypersensitivity reactions (VAH), similar to those in humans given inactivated measles or respiratory syncytial virus vaccines. Safe and effective COVID-19 vaccines must avoid VAH.


Subject(s)
Antibody-Dependent Enhancement , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Animals , COVID-19 Vaccines/adverse effects , Dengue Vaccines/immunology , Humans , Hypersensitivity/etiology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology
16.
Curr Opin Virol ; 43: 71-78, 2020 08.
Article in English | MEDLINE | ID: covidwho-987407

ABSTRACT

The first licensed dengue vaccine led to considerable controversy, and to date, no dengue vaccine is in widespread use. All three leading dengue vaccine candidates are live attenuated vaccines, with the main difference between them being the type of backbone and the extent of chimerization. While CYD-TDV (the first licensed dengue vaccine) does not include non-structural proteins of dengue, TAK-003 contains the dengue virus serotype 2 backbone, and the Butantan/Merck vaccine contains three full-genomes of the four dengue virus serotypes. While dengue-primed individuals can already benefit from vaccination against all four serotypes with the first licensed dengue vaccine CYD-TDV, the need for dengue-naive population has not yet been met. To improve tetravalent protection, sequential vaccination should be considered in addition to a heterologous prime-boost approach.


Subject(s)
Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Animals , Dengue/immunology , Dengue/virology , Dengue Vaccines/administration & dosage , Dengue Vaccines/genetics , Dengue Virus/genetics , Dengue Virus/physiology , Drug Development , Humans
17.
PLoS Comput Biol ; 16(10): e1008292, 2020 10.
Article in English | MEDLINE | ID: covidwho-874143

ABSTRACT

The lack of effective vaccines for many endemic diseases often forces policymakers to rely on non-immunizing control measures, such as vector control, to reduce the massive burden of these diseases. Controls can have well-known counterintuitive effects on endemic infections, including the honeymoon effect, in which partially effective controls cause not only a greater initial reduction in infection than expected, but also large outbreaks during control resulting from accumulation of susceptibles. Unfortunately, many control measures cannot be maintained indefinitely, and the results of cessation are poorly understood. Here, we examine the results of stopped or failed non-immunizing control measures in endemic settings. By using a mathematical model to compare the cumulative number of cases expected with and without control, we show that deployment of control can lead to a larger total number of infections, counting from the time that control started, than without any control-the divorce effect. This result is directly related to the population-level loss of immunity resulting from non-immunizing controls and is seen in a variety of models when non-immunizing controls are used against an infection that confers immunity. Finally, we examine three control plans for minimizing the magnitude of the divorce effect in seasonal infections and show that they are incapable of eliminating the divorce effect. While we do not suggest stopping control programs that rely on non-immunizing controls, our results strongly argue that the accumulation of susceptibility should be considered before deploying such controls against endemic infections when indefinite use of the control is unlikely. We highlight that our results are particularly germane to endemic mosquito-borne infections, such as dengue virus, both for routine management involving vector control and for field trials of novel control approaches, and in the context of non-pharmaceutical interventions aimed at COVID-19.


Subject(s)
Communicable Disease Control/methods , Endemic Diseases/prevention & control , Immunization Programs , Animals , Basic Reproduction Number , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Culicidae , Dengue Vaccines/therapeutic use , Health Policy , Humans , Insect Vectors , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Public Health , Rubella/prevention & control , Rubella Vaccine/therapeutic use , Seasons , Severe Dengue/prevention & control , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL